Sets of $p$-powers as conjugacy class sizes
نویسندگان
چکیده
منابع مشابه
p-divisibility of conjugacy class sizes and normal p-complements
LetN be a normal subgroup of a groupG and let p be a prime. We prove that if the p-part of jx j is a constant for every prime-power order element x 2 N n Z.N /, then N is solvable and has normal p-complement.
متن کاملone-prime power hypothesis for conjugacy class sizes
a finite group $g$ satisfies the on-prime power hypothesis for conjugacy class sizes if any two conjugacy class sizes $m$ and $n$ are either equal or have a common divisor a prime power. taeri conjectured that an insoluble group satisfying this condition is isomorphic to $s times a$ where $a$ is abelian and $s cong psl_2(q)$ for $q in {4,8}$. we confirm this conjecture.
متن کاملPOWERS OF CLASS wF ( p , r , q ) OPERATORS
This paper is to discuss powers of class wF (p, r, q) operators for 1 ≥ p > 0, 1 ≥ r > 0 and q ≥ 1; and an example is given on powers of class wF (p, r, q) operators.
متن کاملSome connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups
Let $G$ be a finite group. We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$. In this paper we characterize solvable groups $G$ in which the derived covering number is finite.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1999
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-99-05138-2